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ABSTRACT

This paper gives some new results on positive dependence
between random variables which are jointly normally distributed
with special reference to certain inequalities of the fora
P(XeA,YeB) > P(XeA)P(YeB), where A and B are given sets
and X and Y are random vectors. Some results are also
given on statistical dependence between quadratic forms.
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1. Introduction

Let X be a random vector and let 51"""§k be its partition
into k sub-vectors. Let P, denote the dimension of Et,t=1,...,k, and
p
let Et be a subset of R t, where R = (-»,»)., The statistical
dependence between the sub-vectors, given by the inequality
k

(1.1) P{X, € E, t=1,...,k} > T lp(
t=

e E

X t)

is of interest in certain problems, such as, life testing and
interval estimation. The above inequality has been considered
by Dunn (1958), Dykstra (1979), Khatri (1967, 1970), Sidak (1967,
1968, 1975), Scott (1967), Slepian (1962) and Tong (1970), for
the case in which the distribution of X is multivariate normal.
In this paper we give some new results on the inequality.

Let the distribution of X be multivariate normal with mean

vector 0 and covariance matrix I = (cij), and let Py = 1,

.
¢
¥

t=1l,...,k. If each Et is an interval symmetric about the origin,
.then the inequality (1.1) follows from Theorem 1 of Sidak (1968).
For the one sided case, that is, when each Et is an interval

of the form (-w,at) or each Et is of the form (at,w). then the
inequality holds if cij > 0 (i#j) by a result due to Slepian

(1962). The reverse inequality holds if o.. < 0 (i#j).

1]
Let (Zij) be the partition of Z, where Eij denotes the
f covariance between X. and gj. Let k = 2 and let r denote the

rank of 212. The inequality (1.1) follows from Theorem 1 of

Khatri (1967) if r = 1 and E1 and E2 are convex sets, svmmetric




about the origin. In a subsequent paper, Khatri (1970) claimed
that the inequality holds also for r > 1. However, the proof
of the generalization given by the author was found incorrect ?
by Sidak (1975). On the other hand, Dykstra (1979) showed
that the inequality holds for r > 1 if E1 is a convex symmetric
set and E2 is the interior of an.ellipsoid given by EEAEZ <c,

where AZZZ is an idempotent matrix. In this paper, we generalize

the result of Dykstra. Moreover, we show that the inequality
(1.1) holds for r > 1 if I satisfies a given condition and E1
and EZ are both increasing (decreasing) sets,where a set E is
said to be an increasing (decreasing) set if X ¢ E and y>(<)x
then y ¢ E,where > (<) means > (<) component wise.

Very few results are known for the case in which the

underlying distribution is not assumed to be multivariate normal.

A set of random variables Yl""’Yn are said to be associated

if the covariance between f(Yl,...,Yn) and g(Yl,...,Yn) is non-

negative for all functions f and g which are nondecreasing in

each argument. ThevariablesYl,...,Y are said to be positively

n

orthant dependent if the following inequality holds for all

values ai.

n
(1.2) P(Y, < a,, i=l,...,n) > T P(Y
rtoot T =l

i S ai).
The above inequality holds if Yl”"’Yn are associated by Theorem
S.1 of Esary, Proschan and Walkup (1967). In Section 3 we show sta-

tistical dependence, including the association between certain




quadratic forms, and in Section 4 we introduce the concept of

negative association.

2. Probability Inequalities
Consider the inequality (1.1) for k=2. Let 51’52 be jointly
normally distributed with mean vector 0 and covariance matrix I

Let Elbe a convex set symmetric about the origin and let EZ denote

the interior of the ellipsoid given by X;AX, < ¢, where A is

a positive semi-definite matrix. We shall show that the inequality
(1.1) holds under certain conditions on A and f. First we give

a lemma whose proof is given at the end of the section. The

lemma is required in the proof of Theorems 2.1 and 2.2 below.

ﬁ Lemma 2.1 Given s > r = rank (212), there exist matrices 213
and L3, of order p,Xs and sxpz,respectively,such that L12%L13L33-
Moreover, Z;q - Iy3I3; and Ty - Ly3lz, are positive definite,

where 231 = 213 and 223 =232.

and 223 are constructed form Lemma 2.1. Then the joint distribusion

of X;, X, can be represented as follows:

é .
X, =SU+ I;z¥
i (2.1)
g X, =TV + L5 ¥
, ‘ where U, V and W are normally distributed independent random

vectors, U3 N,I_ ), v N, I. ) and w 3 N(0,I.). Clearly,
= =pyt =" 7P, = ='s

51, 52 are conditionally independent given W,
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Theorem 2.1. The inequality (1.1) holds for k=2 if (i)

A(Z22 - 223232) is an idempotent matrix and (ii) 232A223 = nIs

for some positive number n, where I3 is constructed from Lemma 2.1.

_1
13 WQ %2, From the sufficiency,

completeness and invariance considerations we find that Y is

Proof. Let Q = WWand Y = I

independent of Q. From the representation (2.1) we have that
1
given W,, X, is normally distributed with mean vector Y Q* and

X,AX, is distributed according to a noncentral chi-square distribu-

tion with noncentrality parameter equal to nQ. Thus

(2.2) P(X,€E;,X,€E,) = Eﬂpcglsﬁlly) P(gstzly)

= EqP(X,¢E, Q) EyP(X,cE; |Y,Q))

Clearly, P(§2€E2|Q) is a decreasing function of Q. Moreover
EY(§15E1|X,Q) is a non increasing function of Q by Theorem 1
of Anderson (1955). Therefore by Kimball's inequality the quan-

tity on the right side of (2.2) is greater than or equal to
EQP(EZeEZIQ). EQ’XP(EIEEIIX,Q)- P(XeEq) P(X,€E;) .

The theorem is proved.

Corollary 2.1. The inequality (1.1) holds for k=2 if A-ZZZ=I

pz'
Proof: Let ¢ be a small positive number such that 211-(212221)/(1-5)
is a positive definite matrix, Then 213-(1-a)°i le and 223 =

(1-¢)

satisfy the conditions of Lemma 2.1. It is sufficient to

I
P
2 1

prove the corollary for A = ¢

IPZ' Now the conditions of Theorem 2.1




1

|

are satisfied for A = € Ip2’222 = I and n = (1-€)/e. Hence

P
the inequality (1.1) holds. A slightly different proof of the

above corollary has been given by Dykstra (1979).
Corollary 2.2. The inequality (1.1) holds for k=2, if AZZZ

is an idempotent matrix.

The proof of Corollary 2.2 is omitted.

There is a large class of matfices L and A for which Theorem 2.1

is applicable. An example is given here for illustration:
Let
25 -4 0 6 2 0 0 0 0 4 4 |
Ip = (-4 2512 ] ,0,0z 6 0 0),5,= |6 6-2-2 i
0 12 25 D .0 6 2 4 4 0 O }
0o 0 2 6/ ,1 1 ;
: -2 1 1
and A = $1,, [, = : ; , Ipg = 1 -1
1 -1

Note that Corollary 2.2 is not applicable since AZ,, is not an idem-
potent matrix.
Next, we consider the case in which E, and EZ are both decreas-

ing or both increasing sets. A matrix is called nonnegative if its

elements are nonnegative. Let 213 and 223 be constructed from Lemma 2.1.

Theorem 2.2. The inequality (1.1) holds for k=2, if Z;3 and I,; are

nonnegative matrices and El and Ez are decreasing (increasing)

sets.

Proof: From the representation (2.1) we have

(2.3) P(X;€E;,X,€E,) = EyP(X eE,|W)P(X,cE,|W).

1!

e T e e S S R e AN <3 A A B 8 ¢ o e . - - ot




6.

Let E1 and E, be decreasing sets. Since E; is a decreasing set
and EKIIE = I;z¥, where I;, is a nonnegative matrix, it follows
that P(£1€Ellﬂ) is non-increasing in each component of W. Similar-
ly P(Kzeﬁzlﬂ) is non-increasing in each component of W. As the

' components of W, being independent, are associated we have

|w)

(2.4) EEP@lEEl'H)P(EZEEz'E) > Eyp(gleslly)ﬁlpqzeﬁz W

=P(X,€E;)P(X,cE,)

The conclusion of the theorem follows from (2.3) and (2.4). The
% above result is proved similarly for the case in which El and EZ

f ' are increasing sets.

Corollary 2.3. The inequality (1.1) holds for k=2 if 212 is a

nonnegative matrix of rank 1.

Proof: Let 212 can be written as A y where 1 is a Pyx1 vector

and ¥ is a P,x1 vector. Since Aiuj > 0 for all i and j, all non-

zero components of A and ¥ have the same sign. So it may be assumed

that A and ¥ are nonnegative vectors. The conditions of Theorem 2.2

are satisfied by letting Z;3 * A and Zy3 = 1
Corollary 2.4. Let xl,...,xk be jointly normally distributed

and let their covariance matrix be nonnegative. Then xl,...,xk are
positively orthant dependent.

The above corollary follows directly from Corollary 2.3.
It is a special case of a more general result due to Slepian (1962).

The proof is omitted.

i

A repeated application of Corollary 2.3 shows that the

inequality (1.1) holds for k > 2 in the following cases,where the




covariance matrix I is given by (i) 0i; = 1, oij’ =p>0,1¢#73j,

(ii) Oij = p‘l'JI for all i and j, (iii) % = 1, p;. = p > 0 for

|i-j] = 1, zero otherwise.

A matrix A is said to be completely positive if A = PP” where P
is a nonnegative matrix. Let A be of order n x n and let
A(i, s,...,n|j,s,...,n) denote the minor of A with rows indexed by
i,s,...,n and columns indexed by j,s,...,n. A sufficient condi-
tion for a nonnegative positive definite matrix to be completely
positive is that A(i,s,...,n|j,s,...,n) >0 for 1 <i, j < s and

2 <s <n by Corollary 5.1 of Markham (1971).

Corollary 2.5. The inequality (1.1) holds if Z(i,s,...,n|j,s,...,n)>0

for 1 < i, j <s, and 2 < s < n where n denotes the order of I.

Proof: Let k = 2. The conditions of the corollary imply that I is
completely positive and so also is Z-eIn for sufficiently small e'>.0.
Therefore let I ~eIn = PP°, where P is nonnegative. Let Pl’ P2

be a partition of P where P1 is of order p,xn and P2 is of order
p,xn. Then 212 = P1P£, 211 -stl = PPi, 222 - eIp2 = P2P£ . Let

213 = Pl and 223 = PZ' Then 212 = Iy3L35- Moreover 211 - L1383

and I are positive definite.Then the inequality (1.1)

22~ 2332
follows from the application of Theorem 2.2. A repeated application

of the above proof yields the inequality for k > 2.

Proof of Lemma 2.1. Let xl,...,xr denote the positive characteristic

1 -1
Zy1i11°

- 31222% 21 is positive definite. Therefore 0 < Ai <1

roots of 212225 Since T is positive definite, it follows

that ¢

11
for i = 1,...,r.




A

Let Pl and P2 be non-singular matrices such that Pizllpl =

Im and P = In. By the singular value decomposition theorem

222272
there exist orthogonal matrices Ql and QZ’ such that

QP1Z1,P,Q; = D

5
= A%/“ for i=1,...,r

where D

(dij) is given by dij =0, i#j, dii

Sz

and dii 0 for i >r, i=1,...,m and j=1,...,n. Let Am,s = (aij)

denote an mxs matrix in which aij = 0 for i#j, a;; = A1{4

i=1,...,r, a;; = 0 fori>r, i=1l,...,m, j=1,...,s. Now let

1. IS
L1z = (Py)QA, o and Z,5 = (Py7) QA o

since A A

m,s'\n,s D, we have that I,, = I;sI;;. Furthermore the

matrix L1 - is positive definite since it can be written

L33
as

R T |
L1y - Ip3fzp = (P7) Q€QyPy

where C is an mxm diagonal matrix, the diagonal elements being
definite.

3. Association of Quadratic Forms
Let Y be normally distributed with mean vector 0 and covariance
matrix £ . In this section we give some results on the statisticr’
dependence among the quadratic forms Y~ Ai Y, i=1,...,k, where

Ai are positive semidefinite matrices.




Theorem 3.1. The correlation between two quadratic forms

Y°A;Y and X‘Aji is nonnegative.

Proof: By direct computation we have

(3.1) cov(X‘Aiz,X‘AjX) = 2 trace AiZAjZ.

Since Ai and Aj are positive semidefinite, the right side of (3.1)
is nonnegative by Theorem 9.1,28 of Graybill (1969).

Remark. If AiZAj is positive semidefinite then it can be shown
that the conclusion of the theorem holds without the assumption
that EY = 0.

Association between two random variables implies that the

correlation between the variables is nonnegative. Theorems 3.2 through

3.4 below,give certain conditions for the association of quadratic

forms. We say that the matrices Ai are diagonalized simultaneously

through a non-singular transformation if there exists a non-singular

matrix P such that PAiP‘=Di, where Di is a diagonal matrix, i=1l,...,k.

Clearly the diagonal elements of each Di are nonnegative. If for
example,AiAj = Ain for each pair (i,j), then the matrices Ai are
diagonalized simultaneously through an orthogonal transformation.

Theorem 3.2. Let n =k = 2. 1If A1 and Az can be diagonalized

simulatenously then Y“A,Y and Y°A Y are associated.

Proof: Under the conditions of the theorem we can assume without

39

loss of generality that A1 and A2 are diagonal matrices. Also,

can be assumed to be a correlation matrix. Let p denote the




%
b

correlation between Y1 and YZ. Now, Y% is conditionally distributed,

,
given Y5, as (l-pz) xi 5 0+ @ non-central chi-square with 1 degree

3¢ freedom and non-centrality parameter §= szg / (l-pz). Thus

the conditional distribution of Y% given Yg is stochastically increas-
ing in Y5 . Therefore, Yi and Yg are associated by theorem 4.7

of Barlow and Proschan (1975). The theorem follows, since X‘AIX

and Y“A,Y are non-decreasing functions of Yi and Y%.

Suppose that the components of Y can be grouped in pairs,
that is Y = (Xi,...,zi)', where each X, is a two-component vector.
Let each Ai be of order 2 x 2, The proof of theorem 3.1 below

is straightforward.

Theorem 3.3. If Xi and zj are uncorrelated (i#j), and Al""’Ak

can be diagonalized simultaneously then X A X ...,K‘A X, are

171=1" kk
associated.

Suppose that the matrices Ai commute pairwise with respect

to £ , that is AiZAj = AJ.ZAi (i#j). Then through a non-singular
n

transformation we can write X‘Aiz = Z?,

aij > 0 and Zl""’zn are independent normal random variables.

Therefore, we have the following result.

§=1aij i=1,...,k, where

Theorem 3.4. If Al,...,Ak commute pair wise with respect to I then

Y'AJY,...,Y A Y are associated.

The property of association of random variables is observed
in many statistical models. Consider, for example, the model

Y. = oY. + £ , i=1,2,....

for a time series, where ¢, are independent random variables. The




11.

distribution of Yi given Yl,...,Yi_1 depends on Yi-l only, by the
Markov property. If p > 0 then the conditional distribution is
stochastically increasing in sequence. On the other hand, if the

distribution of each €5 is unimodal and symmetric about the origin

then the conditional distribution of Y% given Yi*"”yi-l is stochas-

tically increasing in Y%-l and thus the joint distribution of

Y%,...,Yi is stochastically increasing in sequence. It follows
from theorem 4.7 of Barlow and Proschan (1975) that Yl,...,Yn are
associated if o > 0, and that Yi,..,Yi are associated if the dis-

tribution of each €4 is unimodal and symmetric about the origin.

4, Negative Association

The definition of association between a set of random vari-
ables, given above, implies positive dependence in the sense that
large (small) values of any subset of the given variables are
associated with large (small) values of any other subset of the
variables. A weaker form of dependence and of the opposite kind
is implied by the definition of negative association, given below.
The random variables xl,...,xk (k>2) are negatively associated if
the covariance, when it exists, between £(Y) and g(Z) is non-
negative for all nondecreasing functions f and g, where Y and Z are
subvectors representing a partition of the given variables into two
subsets. Two examples of negatively associated random variables
are given below.

Example 4.1. Let X = (Xl,...,xk) be distributed according

to the multivariate normal distribution with mean vector 0 and




12.

covariance I = (cij), where o = 1, oj5 = - (i#j) and 0 < 5 <
(k-l)'l. Let the subvectors Y and Z be obtained through a parti-
tion of the components of X. As the mean of the conditional dis-
tribution of Y given Z is for each component, a linear function of
the components of Z with negative coefficients, the conditional
distribution of Y given Z is stochastically decreasing in each
component of Z. Therefore, the conditional expection of £(Y)
given Z is nondecreasing in the components of Z for any non-

decreasing function f. An application of Kimball's inequality

gives

E £(Y)g(Z) < E £(Y) E g(2).
Therefore, the random variables xl,...,xk are negatively associated.

Example 4.2. Let the random variables Xl,...,Xk be jointly

distributed according to the Dirichlet distribution, given by

the density function

r(\)1+oc-+\)k) \)1'1 \)k-l
A CSRERRFTIN A T Tl *1 %k

x; = 1. The Dirichlet distribution
=1

k
where x; > 0 (i=1,...,k), }
i
can be represented as follows:

Xi = V& /S , 1i=1l,...,k

where Vl"“’vk are independent gamma random variables with
k

Vyseee Vg degrees of freedom, respectively, and S = Z Vi' From
i=]

the above representation it follows that the conditional distribution
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of Y given Z is stochastically decreasing in Z, where Y and 2
are defined as in the previous example. Therefore, the random
variables Xl,...,Xk are negatively associated. The Dirichlet
distribution arises in goodness of fit tests based on sample
spacings (eee.g. Pyke (1965)).

It is.easy to show that the following sets of random vari-
ables are negatively associated: (i) independent random variables,
(ii) nondecreasing functions gi(Xi) of negatively associated random
variables xi's , (iil}. union of independent sets of negatively
associated random variables. Also, it follows directly from the
definition of negative association that the reverse inequality
holds in (1.1) for k = 2 if E1 and E2 are nondec?easing sets and

the components of X are negatively associated.

e s i
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